

HybridKV (HKV): Breaking the Memory Wall with O(1) Complexity

Objective <p>Break the Transformer Memory Wall.</p> <ul style="list-style-type: none">• Demonstrate a bounded-memory O(1) inference architecture enabling long-context reasoning on power-constrained edge devices.• Validate that physics-informed state-evolution memory can replace the linearly growing KV cache while maintaining high-fidelity recall for mission-critical tasks.	Approach <ul style="list-style-type: none">• Symplectic State Module (SSM): Replaces dissipative KV cache with a conserved, fixed-width dynamical state (Patent Pending).• Pointer-Scatter Retrieval: O(1) token reinstatement mechanism bypassing vocabulary projection for rapid, low-power recall.• Hybrid Architecture: Dual-gate mechanism combining long-term symplectic state evolution with minimal local context for syntactic precision.
Payoff <ul style="list-style-type: none">• Infinite Context / Fixed RAM: Decouples inference cost from sequence length.• SWaP-C Transformation: Enables LLM deployment on UAS/tactical edge without hardware upgrades.• Predictable Latency: Deterministic compute load per token; eliminates time-to-first-token drift.• 20–30x Lower Memory Use: Proven reduction versus standard KV cache architectures.	Risks & Mitigations <p>Risks:</p> <ul style="list-style-type: none">• High-frequency token collisions (e.g., digits)• State saturation over ultra-long horizons• Integration overhead at model scale <p>Mitigations:</p> <ul style="list-style-type: none">• Hybrid Window: Maintain small local context ($k < 128$)• Evidence Gating: Margin-based filtering prevents ambiguous pointer activations• Symplectic Stabilizers: ΔH-bounded updates enforce long-term state consistency