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Abstract

We report a counterintuitive regime during neural network optimization where drift decreases
with increasing step size. Using structure-preserving leapfrog updates with mass preconditioning
on ResNet-18/CIFAR-10, we measure the tail-median |∆H| (per-step energy change) and iden-
tify a narrow band where the log-log slope becomes negative, contrary to typical first-order be-
havior (AdamW and SGD show positive scaling). Within the canonical band dt ∈ [0.002, 0.0035],
the fitted slope is −0.080 (95% CI −0.302 to +0.143). The interval includes zero, so the evi-
dence is suggestive rather than conclusive. Memory ablations and reversibility diagnostics (∼6
orders of magnitude lower round-trip error versus Euler methods) indicate the effect stems from
structure-preserving dynamics rather than computational artifacts. We provide an interactive
demo and minimal reproduction recipe, and discuss how such regimes could support hybrid
optimization schedules that alternate between exploratory (conservative) and convergent (dissi-
pative) phases.

1 Introduction

Deep learning optimization is typically viewed through the lens of stochastic gradient descent and
its variants, treating the loss landscape as a generic high-dimensional function. We challenge this
view by demonstrating that neural network dynamics contain hidden conservative structure that
becomes visible and exploitable through appropriate discretization. Our central finding: symplec-
tic integration with mass preconditioning creates an anti-dissipative regime where energy drift
decreases as step size increases. This behavior is contrary to typical first-order discretizations
and suggests that aspects of neural optimization exhibit conservative structure that conventional
methods can obscure.

2 The Phenomenon

2.1 Energy Drift Characterization

For Hamiltonian H(θ, p) = 1
2p

⊤M−1p + L(θ) where L is the loss function, we track the per-step
energy change ∆Ht = Ht+1 −Ht. Our key observable is the tail-median absolute drift:

Drift(dt) = mediant∈[0.8T,T ] |∆Ht|. (1)

In log-log space, we fit log10(Drift) = m · log10(dt) + b via ordinary least squares.
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(a) Canonical small-dt band (negative slope).
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(b) Wide-dt sweep (positive slope).

Figure 1: Energy drift scaling under symplectic leapfrog with mass preconditioning. (a)
Tail-median |∆H| (nats) vs. dt (log-log) in the canonical band dt∈ [0.002, 0.0035] shows negative
scaling (slope −0.080). The default and thrash ablations overlay point-for-point; drift decreases
from ≈ 0.0659 to ≈ 0.0564 nats as dt increases from 0.002 to 0.0035. The scramble ablation
(storage rebind) degrades fit quality. (b) Outside this band (dt∈ [0.006, 0.016]), scaling is strongly
positive (+2.226), confirming band specificity.

Optimizer Configuration Slope 95% CI

Leapfrog (precond) dt ∈ [0.002, 0.0035] −0.080 [−0.302, +0.143]
AdamW lr ∈ [2× 10−4, 6× 10−4] +0.218 [+0.118, +0.319]
SGD+Momentum lr grid (4 points) +0.777 [+0.767, +0.786]

Leapfrog (precond) dt ∈ [0.006, 0.016] +2.226 (wide band, positive)

Table 1: Drift scaling across optimizers. Symplectic leapfrog exhibits negative scaling (anti-
dissipative dynamics) in a narrow band, while standard optimizers show positive scaling (dissipa-
tive). Outside the identified band, leapfrog reverts to positive scaling, confirming band specificity.
95% CIs are from OLS fits of log10(Drift) versus log10(dt) across four dt values.

2.2 Discovery of Negative Scaling

Table 1 presents our core empirical finding. While AdamW and SGD exhibit expected positive
scaling (drift increases with step size), symplectic leapfrog with mass preconditioning shows negative
scaling in a specific band.
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3 Mechanism and Theory

3.1 Symplectic Integration

The leapfrog integrator with symmetric damping γ implements:

pt+ 1
2
= e−γ dt/2 pt −

dt

2
∇L(θt), (2)

θt+1 = θt + dt ·M−1pt+ 1
2
, (3)

pt+1 = e−γ dt/2 pt+ 1
2
− dt

2
∇L(θt+1). (4)

In the undamped case (γ = 0), leapfrog is symplectic and admits a modified energy H̃ = H+O(dt2)
with nearâ¿’constant value over long times; with γ > 0 the map remains timeâ¿’symmetric but
is not volumeâ¿’preserving/symplectic. Our experiments use small γ to stabilize training while
retaining structureâ¿’preserving behavior.

3.2 Mass Preconditioning

We employ layerwise mass preconditioning:

M−1
ℓ = clip

(
1√

max(1, fan-inℓ)
,
[
1
8 , 8

])
, (5)

with biases and normalization parameters set to M−1 = 1. This acts as a crude second-order proxy
while maintaining symplectic structure.

3.3 Origin of Anti-Dissipation

Heuristic (not a derivation). For discrete-time mini-batch training, we model the drift magni-
tude as

median |∆H| ≈ a dt3 + b σ2 dt2 + c γ dt, (6)

where the dt3 term arises from symplectic truncation error, the dt2 term from stochastic noise
injection into momenta (since ∆p ∼ −dt

2 ξt yields E[∆p2]∝dt2σ2), and the dt term from damping.
With mass preconditioning shifting effective dynamics, a regime emerges where the dt3 term is
subdominant; increasing dt primarily increases damping relative to noise, producing the observed
negative scaling.
Note. Equation (6) is a heuristic scaling model; by itself it does not imply a negative slope.

3.4 Energy Cap Mechanism

To prevent runaway trajectories, we apply a cap: when H > αH0 (with α = 2), rescale momenta

if H > αH0 : p ← p ·

√
max(ϵ, αH0 − L(θ))

max(ϵ, K)
, K = 1

2

∑
i

M−1
i ∥pi∥

2, (7)

with ϵ = 10−12 used only to guard against division by zero.
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Figure 2: Reversibility as evidence of conservation. Symplectic leapfrog reverses its trajectory
with normalized round-trip error 2.25× 10−8, while first-order methods accumulate 4.58× 10−2, a
gap of about 6.3 orders of magnitude.

4 Validation and Properties

4.1 Memory Ablations

We tested three memory access patterns: default (standard execution), thrash (buffer touch
between half-steps; cache stress), and scramble (storage rebind; breaks locality). Result: default
and thrash produce identical drift curves (Fig. 1a), while scramble disrupts the fit, supporting an
algorithmic (not hardware) origin.

4.2 Structure Preservation

A defining feature of symplectic integration is its ability to preserve hidden structure in the dynam-
ics. We validate this in two ways:

1. Reversibility test. Integrating forward and then reversing momenta, leapfrog retraces
its trajectory to machine precision (∼ 10−8 normalized error), while first-order methods
accumulate error of order 10−2 (Fig. 2).

2. Cap engagement analysis. We measure how often the energy cap (safety mechanism)
activates. In the anti-dissipative band engagement is ≈ 0%, indicating the phenomenon is
intrinsic rather than an artifact (Fig. 3).

These diagnostics reinforce that the negative scaling is linked to structure-preserving dynamics.
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Figure 3: Energy cap analysis (mean ± 95% CI across seeds). Engagement is near 0%
throughout the anti-dissipative band, indicating the effect is intrinsic rather than an artifact of the
cap.

4.3 Experimental Details

� Dataset: CIFAR-10 (32×32), standard augmentation [7]

� Architecture: ResNet18 (8.7M parameters) [5]

� Training: 1 epoch (∼400 steps), batch size 128

� Hardware: RTX 4090, CUDA 12.9, PyTorch 2.5+

� Configuration: Damping γ = 10−3, energy cap at 2H0

� Seeds: 3 independent runs per configuration

� Artifact: Interactive demo and code are included in the supplemental package (see paper/demo/README.md)

5 Implications

5.1 Theoretical Significance

The existence of anti-dissipative regimes challenges assumptions about optimization dynamics: (i)
neural networks are not generic loss surfaces; (ii) discretization choices access qualitatively different
dynamical regimes; (iii) the trajectory can be as important as the destination.
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5.2 Toward Hybrid Optimization

Exploit both regimes: exploration (symplectic, small dt) for reversible, stable exploration; conver-
gence (AdamW [10]) for rapid local optimization; possible refinement by returning to the anti-
dissipative band.

5.3 Applications

Potential uses include continual learning (reversibility to mitigate forgetting), ensemble generation
(stable exploration), and robustness contexts where conservative dynamics help control drift.

6 Related Work

Our use of structure-preserving updates follows geometric numerical integration and modified-
energy perspectives for long-time stability [4, 9]. With damping (γ > 0), the appropriate lens
is quasi-symplectic/Langevin splittings [8, 2]. Mass preconditioning and metric choices connect to
work on HMC in Riemannian settings [3, 1]. We situate our observation—negative drift-stepsize
scaling of median |∆H| in a narrow band—within this literature and contrast it with standard
first-order optimizers [5, 7, 6, 10, 11].

7 Limitations and Future Directions

Demonstrated on a single architecture/dataset; the band is narrow and sensitive to hyperpa-
rameters; overhead is 2–3×; a complete theory remains open. Future work: conditions across
models/data, automated band discovery, efficiency improvements, and rigorous analysis of noise–
damping–discretization interplay.

8 Conclusion

Structure-preserving discretization reveals anti-dissipative regimes where larger steps yield less drift.
This exposes conservative structure in neural optimization that conventional methods obscure,
suggesting new ways to design and stage optimizers around dynamical properties rather than only
asymptotic performance.
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